Optimal solvability for a nonlocal problem at critical growth
نویسندگان
چکیده
منابع مشابه
Nonlocal Problems at Nearly Critical Growth
We study the asymptotic behavior of solutions to the nonlocal nonlinear equation (−∆p) u = |u|u in a bounded domain Ω ⊂ R as q approaches the critical Sobolev exponent p∗ = Np/(N − ps). We prove that ground state solutions concentrate at a single point x̄ ∈ Ω and analyze the asymptotic behavior for sequences of solutions at higher energy levels. In the semi-linear case p = 2, we prove that for s...
متن کاملNonlocal problems at critical growth in contractible domains
We prove the existence of a positive solution for nonlocal problems involving the fractional Laplacian and a critical growth power nonlinearity when the equation is set in a suitable contractible domain.
متن کاملSolvability Conditions for a Nonlocal Boundary Value Problem for Linear Functional Differential Equations
The aim of the paper is to find efficient conditions for the unique solvability of the problem u′(t) = `(u)(t) + q(t), u(a) = h(u) + c, where ` : C([a, b];R) → L([a, b];R) and h : C([a, b];R) → R are linear bounded operators, q ∈ L([a, b];R), and c ∈ R.
متن کاملSolvability of an impulsive boundary value problem on the half-line via critical point theory
In this paper, an impulsive boundary value problem on the half-line is considered and existence of solutions is proved using Minimization Principal and Mountain Pass Theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2018
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.10.019