Optimal solvability for a nonlocal problem at critical growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal Problems at Nearly Critical Growth

We study the asymptotic behavior of solutions to the nonlocal nonlinear equation (−∆p) u = |u|u in a bounded domain Ω ⊂ R as q approaches the critical Sobolev exponent p∗ = Np/(N − ps). We prove that ground state solutions concentrate at a single point x̄ ∈ Ω and analyze the asymptotic behavior for sequences of solutions at higher energy levels. In the semi-linear case p = 2, we prove that for s...

متن کامل

Nonlocal problems at critical growth in contractible domains

We prove the existence of a positive solution for nonlocal problems involving the fractional Laplacian and a critical growth power nonlinearity when the equation is set in a suitable contractible domain.

متن کامل

Solvability Conditions for a Nonlocal Boundary Value Problem for Linear Functional Differential Equations

The aim of the paper is to find efficient conditions for the unique solvability of the problem u′(t) = `(u)(t) + q(t), u(a) = h(u) + c, where ` : C([a, b];R) → L([a, b];R) and h : C([a, b];R) → R are linear bounded operators, q ∈ L([a, b];R), and c ∈ R.

متن کامل

Solvability of an impulsive boundary value problem on the half-line via critical point theory

In this paper, an impulsive boundary value problem on the half-line is considered and existence of solutions is proved using Minimization Principal and Mountain Pass Theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2018

ISSN: 0022-0396

DOI: 10.1016/j.jde.2017.10.019